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We introduce a model for semiflexible polymer chains based on the integral of 
an appropriate Gaussian process. The stiffness is characterized physically by 
adding a bending energy. The degree of stiffness in the polymer chain is quan- 
tified by means of a parameter and as this parameter tends to infinity, the limit- 
ing case reduces to the Brownian model of completely flexible chains studied in 
earlier work. The calculation of the partition function for the configuration 
statistical mechanics (i.e., the distribution of shapes) of such polymers in elonga- 
tional flow or quadratic potentials is equivalent to the probabilistic problem of 
finding the law of a quadratic functional of the associated Gaussian process. An 
exact formula for the partition function is presented; however, in practice, this 
formula is too complicated for most computations. We therefore develop an 
asymptotic expansion for the partition function in terms of the stiffness 
parameter and obtain the first-order term which gives the first-order deviation 
from the completely flexible case. In addition to the partition function, the 
method presented here can also deal with other quadratic functionals such as 
the "stochastic area" associated with two polymer chains. 

KEY WORDS:  Semiflexible polymers; elongational flows; quadratic poten- 
tials; small-stiffness expansion; partition functions; quadratic functionals. 

1. I N T R O D U C T I O N :  A M O D E L  FOR P O L Y M E R S  OF 
FINITE ST IFFNESS 

This study extends previous work on equilibrium polymer configurations 
(in Chan, Dean, Jansons, and Rogers (1994)) to the case of stiff, or more 
precisely semi-flexible polymers. Distributions of polymer shapes are 
required for determining the rheology of polymer solutions, and therefore 
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have applications in a large number of fields including chemical engineering, 
biology. A sudden change in the rheology of a polymer solution occurs due 
to the coil-stretch transition. The main method used in Chan et  al. (1994)  
is a technique for finding the law of a quadratic functional of Brownian 
motion and some other Gaussian processes using ideas from excursion 
theory. In the case of a semi-flexible polymer, one can no longer model the 
path of a polymer molecule as the path of a process like Brownian motion. 
Instead, a much smoother path is needed and in this paper we use the 
integral  of a suitable (Gaussian) process. 

One possible model is to take a unit vector Nt diffusing in ~3 accord- 
ing to the equation 

d N ,  ---- ( I - -  N , N ~ )  d B  t --  N t dt, INol = 1 

where B is a standard Brownian motion in E3 and I is the 3 x 3 identity 
matrix. (It is easy to see that if INol = 1 then INtl = 1 for all t.) We use as 
the model of a semi-flexible polymer the integral process X t = ~o N s  ds for 
0 ~< t ~< T, where T >  0 is a fixed constant. This model is attractive physi- 
cally in several respects: for example, the length of the path Xt remains 
fixed, even after putting the polymer in a potential field and doing 
Boltzmann reweighting. Real polymers are likely to behave more like this 
than in the Gaussian model we consider here. However, the diffusing unit 
vector is rather hard to work with mathematically. For  one thing, the 
problem of determining the partition function cannot be reduced to one 
involving the one-dimensional independent components of X. For  this 
reason, in this paper we use the integral of another Gaussian diffusion pro- 
cess, whose components are independent and the partition function there- 
fore factorizes. However, it is useful to highlight some of the limitations of 
our model by comparing with this diffusing vector model. 

For  a model where the path X~ of the polymer (in ~3) consists of three 
independent components, we are interested in the (one-dimensional) parti- 
tion function 

ZfT -X0 2 
~ 

for fixed T > 0 ,  where r is the resistance measure and ) ( = r ( [ 0 ,  T] )  1 
~ X t r ( d t )  is the centre of resistance. The resistance measure models the 
interaction between the ambient flow and the polymer; the resistance 
measure is proportional to Lebesgue measure if the polymer is of uniform 
thickness. For  simplicity we have made the usual free-draining approxim- 
tion, that is we have ignored hydrodynamic interactions between the 
polymer with itself. For  a more detailed discussion of the statistical 
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mechanics of polymers in pure straining flows and the physics behind the 
above partition function, we refer the reader to our earlier paper Chan 
et al. (1994). 

We shall treat the qudratic functional 

22 

as the basic object of our study because calculation of (1.1) is in fact the 
main step in calculating the partition function (1.0). Once we have an 
expression for (1.1), using the tricks of "uncompleting the square" and 
mixing over a suitable Gaussian random variable as described in Chan 
et al. (1994), the linear terms and centre-of-resistance terms in the partition 
function (1.0) can easily be incorporated. (An example of this in action can 
be seen in the proof of Proposition 4.1.) 

We take as the process X the integral (or position process) of an 
Ornstein-Uhlenbeck (OU) process U as follows: 

dXt = ocUt dt (1.2a) 

dU, = -ocUt dt + dB~ (1.2b) 

where B is a standard Brownian motion and ~ > 0 is a parameter describ- 
ing the degree of stiffness of the polymer: a large ~ corresponds to a small 
degree of stiffness. The model of semi-flexible polymers described by Eqs. 
(1.2a, b) is equivalent to that discussed in Section 15.7 of Kleinert (1990). 
As mentioned by Kleinert, one must be careful to obtain the right model 
of semi-flexible polymers. Using a stochastic calculus approach, one is less 
likely to choose the wrong model as the right model also looks the most 
natural from the point of view of stochastic calculus. To highlight the 
choice of model used in this study, we now determine E[X2], as this quan- 
tity is always given by physicists. It is well known that the solution to 
(1.2b) is given by 

U t  ~ e -cot 

(More generally, see Section2 
Gaussian random variables. We 
is a stationary process and is 
Brownian motion W as follows: 

Ut 

below.) In particular, U, and Xt are 
take Uo~N(O,  (2e)-~), in which case Ut 
identical in law to a time-change of a 

/ ' e2~ t \  
(1.3) 
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Hence using (1.3), assuming without loss of generality that X o = 0, 

EEe~X']=E[exp {2a f~ Usds)] 

, f(' a)2 ( '  ' dr &} =exp ( 2 Jo fo E(u~u,,) 

= exp ~(-- (e st (2a + a t - -  1) (1.4) 

We see from the above that the mean squared end-to-end distance of the 
polymer chain is given by 

e ~ ' + a t -  1 E(x, - (1.5) 
a 

so for small at, F(X, 2) ~ at2/2 while for large at, ~:(X 2) ~ t. The expression 
(1.5) and the large and small at asymptotics agree with those obtained in 
Section 15.7 of Kleinert (1990). 

Observe that (1.4) shows that Xconverges in law to a Brownian motion 
as ~---, ~ ,  corresponding to the completely flexible case studied in Chan 
et al. (1994). In this paper, we show that the corresponding partition func- 
tion also converges to the Brownian case and investigate the rate at which 
this convergence takes place, that is the deviation of a slightly semi-flexible 
polymer from the completely flexible case. 

When r(dt) is Lebesgue measure, we obtain an explicit formula for 
the quadratic functional (I.1) (see Section2). However, this formula is 
extremely complicated and messy and it is not easy to discern the 
asymptotic behaviour directly from this formula. We shall therefore 
develop in Section 3 a method based on studying the large a asymptotics 
of a Riccati differential equation which involves a technique widely used in 
many areas of applied mathematics and commonly known as a boundary- 
layer approximation. Having obtained these theoretical results, we present 
in Section4 some simple examples of semiflexible polymers which 
correspond to the examples studied in Chan et al. (1994). Finally, in 
Section 5, we briefly describe how the treatment presented in Section 3 can 
be applied to the stochastic area of two polymer two chains. 
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2. EXPLICIT FORMULA FOR THE LAW OF A GENERAL CLASS 
OF QUADRATIC FUNCTIONALS 

We are interested in calculating Laplace transforms of quadratic func- 
tions of the form (1.1) for processes X of the form (1.2). At present, there 
exist many different methods for calculating such Laplace transforms: for a 
concise survey of these methods see Yor (1992) and also the references in 
Chan et al. (1994). In this last article, powerful excursion theoretic ideas 
and local-time methods such as the Ray-Knight theorem are applied to 
good effect. However, in the present setting excursion methods are no 
longer appropriate because we are no longer dealing with one-dimensional 
Markov processes (e.g., the process X in (1.2) is not Markov even though 
the couple (X, U) is); moreover, there is not an analogous Ray-Knight 
theorem for OU type processes like (1.2). Fortunately, an old trick comes 
to the rescue... 

2.1. A Girsanov Transform Approach to General Quadratic 
Functionals 

Consider first the following general situation. Let X be a process in Rn 
satisfying the linear stochastic differential equation 

d X, = E X ,  dt + ~  dB, (2.1) 

where E is an n x n matrix, B a standard Brownian motion in Na and cr is 
an n x d matrix. We shall calculate (for an arbitrary initial value Xo) 

_ 

where Q is an n x n non-negative symmetric matrix. To be precise, the 
expectation E in (2.2) is taken with respect to the canonical measure P 
under which B is an standard Brownian motion and under which X has the 
law of the solution to the SDE (2.1); later, we need to work with another 
measure Q which is obtained from P under a Girsanov transform. 

Theorem 2.1. Let X be a Gaussian process satisfying (2.1) and 
suppose that, for each t, the Gaussian random variable X, has mean a, and 
covariance matrix V,. Let Q be an n x n non-negative symmetric matrix. 
For  2 e N, let F = F(2) be a symmetric real solution to the matrix quadratic 
equation 

F a a T F -  (FE + ErF)  -- 22Q = 0 
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with the property that F ( 2 ) ~  0 as 2--* 0. Then for all 2 in a neighbour- 
hood of 0, 

II::[exp{- 20 ~ 

1 XoT/'Xo) } d e t ( I -  FVt) 1/2 =exp ( - -  ~ (tr(arFa)t+ 

(1 r I 1Fai} x exp ~ a, ( -- FVt) 

Proos Observe that since (2.1) is linear, it has an explicit solution; 
indeed, by It6's formula, exp{ - rE} X, - X 0 = ~ exp{ - sE}  a dB s is a local 
martingale and so 

X~ = exp{ tE} X o + exp{ tE} fo" exp{ - sE}  a dB s (2.3) 

In particular, observe that X is a Gaussian process. Next, again by It6's 
formula, if F is any real symmetric matrix then 

d(_x~r_x) = (d_x) ~r_x + x ~ r  d_X + (d_X) ~r d_x 

= 2 x r r a d B , + X r ( V E + E r F )  X, dt+tr(arva) dt (2.4) 

Suppose that the symmetric matrix F is chosen to be a solution of the 
quadratic matrix equation 

FaaTF-  (_rE + ErF) - 22Q = 0 (2.5) 

with the properties stated in the theorem. Define a measure Q, equivalent 
to P, by 

dQ = e x p -  X ~ F a d B s -  ~ XTFaaTFXsds (2.6) 
dP ~, 

where { o~} is the natural filtration associated with the Brownian motion B 
(or equivalently, the process X). Note that the right-hand side of (2.6) is a 
true martingale, not just a local martingale, so that the expectation under 
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P of (2.6) is 1 and O is therefore a true probability measure. The reason 
for this will be explained below, once we have derived Eq. (2.8). 

Combining (2.4) and (2.5) we see that 

lfo_X~'FaarF_X~.ds}l xexp{f]_XTFadB,+~ ~ _ 

=exp{ - -2  tr(arFa)}O[exp{~(XrFX,--X~FXo)}] (2.7) 

Thus the whole point of the change of measure (2.6) is to replace the 
quadratic functional appearing in (2.2) by just a quadratic function of a 
random vector, whose distribution is still Gaussian under the new measure 
O. Indeed, by the Cameron-Martin-Girsanov theorem (see for example 
Rogers and Williams (1987) Theorem IV.38.9), the process 

Hit = B, + arFX , ds 

is a Brownian motion under 0 and therefore, under Q, the process 
satisfies the SDE 

d Xt = ( E -  ~zvF) Xt dt +adW, (2.8) 

The solution to (2.8) does not explode. If we now start with Eq. (2.8) 
and let P be the law of the Brownian motion B (or equivalently, the law 
of the process satisfying (2.1)), we can define 0 to be the law of the 
process satisfying (2.8) (where W is a Brownian motion). Then up to 
the time of explosion--which in our case is Q-almost surely infinite--the 
measures Q and P are related by (2.6) and hence the right-hand side of 
(2.6) is a true martingale. This is the same kind of argument as in Exer- 
cise (2.10) of Chapter IX of Revuz and Yor (1994). Equation (2.8) has the 
same form as (2.1) and its solution is therefore given by (2.3) with E 
replaced by E - a a r F  and B replaced by W. In particular, if we put 
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(b, = exp{t(E--aarF)}, we see that X, is Gaussian with mean a, = ~,_X0 
and covariance matrix 

= fo* ~,  _ , a a r ~ F _ ,  ds (2.9) 

where 

X , =  (Ps *o-o-T(~>.7- i ) r ds 

is the covariance matrix of ~ ) I~ - l a  dW~. Finally, according to the well- 
known formula for quadratic functions of Gaussian random variables 
(sometimes known as the "fundamental theorem of statistics"--see Chan 
et al. (1994)), we arrive at the explicit formula 

1 r =exp{--2tr(arFg)}QIexp{~(_XiF_X~--_X~F_Xo)}] 

. ~ (tr(a Fg) d e t ( I -  

xexp{~aF(l-rV,)  ' ra,} (2.10) 

(Since we are taking 2 close to 0 and consequently F is close to 0, we can 
assume that (1--FV,) i is defined.) | 

t7omarlrs. (i) It is not necessary that the matrix Q in (2.2) be non- 
negative; this assumption is made solely to ensure that (2.2) is finite, which 
is all that is required. Thus, for example, 2 could be complex. 

(ii) The continuity assumption in Theorem2.1, that /"(2)--+0 as 
2 --+ 0, is also made purely for convenience: in this case, the last line in (2.7) 
is obviously 1 when 2 = 0. 

(iii) The trick of using a Girsanov change of measure to reduce the 
problem of finding the law of a quadratic functional of an infinite dimen- 
sional object to one of just finding the law of a quadratic function of a 
finite dimensional random variable has been used quite often already--see 
Yor (1992) for other examples. 
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2.2. An Exact Expression for the Partition Function 

We now specialize the preceding general treatment to the case (1.1) 
and (1.2) with r(dt) being Lebesgue measure: thus 

Q = ( ~  ~ E = ( 0  0 ? ~ ) ,  a - - ( ~ )  (2.11) 

An elementary exercise then shows that the general solution of (2.5) is 

F =  - (2.12) 
2 - ~ + ~  

(As we are interested in the large ~ > 0 case, we may assume that F is real.) 
In order to have F--+ 0 as 2--+ 0 we need to take the " + "  version of (2.12). 
For the matrices (2.11) and (2.12) we have 

and so from (2.1) we see that, under Q, the process X=(X,  U) r 
corresponds (up to a multiplicative constant) to the position and velocity 
of a noisy damped simple harmonic oscillator. Putting 

and 

= ~ _ 2 2  (2.13a) 

t /+x /q2 - -4  */-- ~/t/2-- 4 (2.13b) 
r = 2 ' /a2 -- 2 

we note that --]./1V/~ and - - p 2 x / ~  are the eigenvalues of E-oaT['. By 
diagonalization, it is easy to see that 

q~t = exp{ I(E-- aarF)} 

1 //x ~ e "2"/G--/x2e-"~"/G N/~ (e-'~"/G-- e "'"/G) / 

x / ~ l X / ~ ( e  #lt'~--e -p2t'~) flle-plt.~_[x2e #2tx/-~/ 
(2.14) 
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Hence the covariance matrix S, of I~ ~,, ltr dWs is defined by 

_ 1 fs or. (et~2s ~ - -  e "t s,/~)2 ds _r.(t) r12_ 4 

_~12(t)=_Y21(t)=rl2--4 f ~ (e~'2"~"/~-e~,S',/~)(i.tlez',~',/~-1~2e~'2~'/-i-~) ds 

f2 $22(t) = 1 (~l e ~ ' ~ ' / ~ - ~ e ~ ' ' / ~ ) ~  ds (2.15) 
t/2--4 

Also, 

tr(arFcr) = - ~  + ~ + 2c~2 (2.16) 

Defining V, as in (2.9) and substituting (2.12)-(2.16) into the formula 
(2.10) then gives a very complicated formula for 

2 2  T 2ds}] (2.17) 

in terms of c~ and 2. 

3. A S Y M P T O T I C S  FOR S M A L L  STIFFNESS 

The purpose of this section is to investigate how the partition function 
(2.17) behaves as 0~ ~ oo. Because the explicit formula obtained in the pre- 
vious section is so complicated, it would be rather messy, to say the least, 
just to obtain the limit of (2.17) as ~-~ 0% let alone to find the rate of con- 
vergence. (Of course we expect the large 0c limit of (2.17) to be identical to 
the Brownian case.) We develop an alternative approach to investigate the 
large 0c asymptotic behaviour. 

3.1. Ordinary Di f ferent ia l  Equat ions Associated w i t h  the 
Quadrat ic  Funct ional  

Again, consider the general situation of the previous section, with X as 
in (2.1) and (2.3) and we wish to calculate the Laplace transform (2.2). 
Define 

. 2 2 f ' x ~ O X s d s + O f ~ _  f ~ 1 v , . - 2  j ~ x~ R d Xs+~ _X~,S,X,_ + c, (3.1) 

where Q is a given non-negative symmetric matrix, R is a given anti-sym- 
metric matrix and we seek a symmetric matrix function St and a function 
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c so as to make M t := e -v, a martingale. (Note that S can be taken to be 
symmetric without loss of generality because for any matrix S and any 
vector x, we have 2xrSx = xr(S + Sr)x.) By It6's formula 

1 
dM, = - M, dV, + ~ Mt d[ V], 

{2~ I XTS, X, dt + XTStdX, = -- M, XrtQX, dt + O Xr, R d X, + ~ . . . .  

1 S r } 1 M,(OXrRa dB, + XrSta +~(a ,) s, cx ,+e,  dt +~ _ dB,) 2 

= d(mar t . ) -Mt  {~ XT(22Q + ~r + XF(OR + S , )EXtdt  

1 r dt} + ~ tr(~ S,a) dt + i, 

+ 21 Mt(O2XrRaarRTX, . . . . . .  dt + 20XrtStaarRrX, dt + XrtS,aarS,X, dt) 

Therefore, in order that Mz be a local martingale, we require 

dSt StaarSt + StF + FrSt = P 
dt 

dc, 1 r 
~ -  + ~ tr(o S,a) =0  

(3.2a) 

(3.2b) 

where F= E -  OaarR r and P = 02RtrffTR T -  ORE-  O(RE) r -  22Q. This 
result is very similar to that of Yashin (1993). The ODE (3.2a) is of course 
the famous matrix Riccati differential equation which arises frequently in 
the context of optimal control of linear systems with quadratic costs (e.g., 
Kalman-Bucy filter). The appearance of the Riccati equation in the context 
of Laplace transforms of quadratic functionals, while less well-documented, 
has nevertheless quite a long history (e.g., see Yashin (1993), Rogers and 
Shi (1992) and the references therein). 

Specializing now to the case of (2.11) and taking R = 0, we see that if 
we could solve (3.2) with the boundary conditions S t =  0 and c r = 0 ,  we 
would obtain 

22 r 2ds}] exp - E [ e x p { - ~ - f 0  X~ = { 1 r _Xo So_Xo - Co} (3.3) 

822/88/1-2-12 
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prov ided  that  M is actually a mar t ingale  and  not  just  a local mart ingale.  
But by  construct ion,  Mt is of  the fo rm 

1 [N],} M~ = exp (N~ - ~ 

where dN~ = - Xr (  OR + S t)a dB ~. The same "non-explos ion"  a rgumen t  as 
used in the previous  section then shows tha t  M is a true mart ingale .  

Wri t ing 

S,= {f(t) g(t)') 
\ g ( t )  h ( t )J  

the Eqs. (3.2) become  the following system of  O D E s  

J~(t) = g(t)  2 - 2 2 (3.4a) 

~(t) = g(t) h(t) - o~(f(t) - g( t ) )  (3.4b) 

/~(t) = h(t) 2 - 2~(g( t )  - h(t)) (3.4c) 

6(t) = - �89 (3.4d) 

Clearly, we need only solve (3.4a-c).  While the appropr i a t e  b o u n d a r y  
T 2 condi t ions for the law of  ~o X~ ds are f ( T ) = g ( T ) = h ( T ) =  c ( T ) =  0, we 

actual ly need to consider  more  general  b o u n d a r y  condi t ions  for the case of  
tree polymers ,  so we impose  on (3.4) the general  b o u n d a r y  condi t ions 

f ( T ) = K f ,  g ( T ) = K g ,  h ( T ) = K h  and c ( T ) = K c  (3.5) 

F r o m  now on, writ ing ?, = 1/0c, we can rewrite (3.4) as 

f ( t )  = g(t)  2 - 2 2 (3.6a) 

?~(t) = ?g(t) h(t) - f ( t )  + g(t)  (3.6b) 

fl~(t) = )~h(t) 2 - 2g(t)  + 2h(t) (3.6c) 

To  be explicit abou t  the way in which the solut ion to (3.6) depends  on 7, 
we shall somet imes  write f (7 ,  t), g(7, t) etc. We wish to s tudy the a symp-  
totic behav iour  of  the solut ion to (3.6) subject to b o u n d a r y  condi t ions  (3.5) 
for small ? > 0. The  idea is to use a power  series in 7 of  the fo rm 

f ( t )  = F o ( t )  + F l ( t  ) 7 + F 2 ( t )  ~22 ..~_ . . .  

g(t)  = Go(t) + Gl( t )7  + Gz(t) 7 2 + . . .  etc. 
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Unfortunately, the solution cannot be uniformly approximated by such a 
series throughout the entire interval [0, T]. Such a phenomenon has been 
well-documented in the literature and provided certain technical conditions 
are satisfied, it is possible to use a method commonly known as the 
"boundary layer method," which is discussed in many standard texts on 
singular perturbation theory for ODEs. The treatment in Wasow (1965) is 
particularly well-suited to our present purposes. We give here a brief sketch 
of the theory as it applies to our problem; the detailed proofs can be found 
in Sections 39-40 of Wasow (1965). Because we are solving (3.6) with 
boundary conditions at t = T and not at t -- 0 and because the right-hand 
side of (3.6) also involves y, we need to modify the treatment of Wasow 
slightly, but otherwise, everything else goes through after the necessary 
(minor) changes have been made. 

3.2. Limiting Behaviour of the ODEs for Small Stiffnes 

We first appeal to a convergence theorem of Tihonov which says that 
as ?$0,  the solution to (3.6) converges to the solution of the so-called 
reduced sys tem obtained by putting ~ = 0 in (3.6). The next result is essen- 
tially the same as Theorem 39.1 in Wasow (1965), specialized to the present 
situation. 

Lemma 3.1. For fixed, t, we have 

lim f(y, t) =fo(t), lim g(?, t) =go(t), and lim h(y, t) =ho(t ) 
y ~ O  7 ~ 0  7 ~ 0  

where (fo, go, ho) is the solution to the reduced system 

J~o(t) = fo(t)  2 - 2 2 (3.7a) 

go(t) = ho(t) = fo( t )  (3.7b) 

fo(T) = K s (3.7c) 

This convergence is uniform in the interval [ 0, T] for f and uniform in any 
interval [0, T - 6 ]  (fi > 0) for the other functions g and h. (In particular, 
note that convergence fails near T.) 

Proof. We give a rough sketch of the proof, indicating only the 
necessary modifications to the proof in Wasow (1965) (Theorem 39.1). 
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Make a "stretching transformation" as follows: put s = ( T - t ) / y ,  so 
that t = T -  ys. In terms of s, the Eqs. (3.6) read 

f ' ( s )  = -- Y(g(s) 2 - 22) (3.8a) 

g'(s) = --yg(s) h(s) + f(s) -g(s )  (3.8b) 

h'(s) = -yh ( s )  2 + 2g(t) - 2h(t) (3.8c) 

where, by a slight abuse of notation, we have written f ( s ) = f ( y ,  s ) =  
f(),, T -  ~s) etc. and of course f ' (s)  = df(y, T -  ys)/ds. The boundary condi- 
tions (3.5) then become 

f ( 0 )  = K/ ,  g(O)=Kg, h(O)=Kh and c(0) = Kc (3.9) 

Putting ~,=0 in (3.8) gives the so-called boundary layer equation corre- 
sponding to (3.6): 

)7'(s) = 0  (3.10a) 

~'(s) = )7(s) - ~(s) (3.10b) 

h'(s) = 2~(t) - 2h(t) (3.10c) 

whose solution, subject to (3.9) is 

)7(s) = Kj  

g(s) = (Kg - Ks) e-S + Ks (3.11 ) 

h(s) = (Kh + K s -  2Kg) e-2S + 2 ( K g  - Kf) e-S + Ks 

Since the right-hand side of (3.8) depends continuously on y, we have 

l i m / ( y ,  s ) =  lim f(y,  T - y s )  =)7(s), 
y ~ 0  y~O 

lim g(?, s) = ~(s), and lim h(y, s) = h(s) 
y ~ 0  y~O 

From (3.11), we see that the boundary layer Eq.(3.10) is (uniformly) 
asymptotically stable, with stable fixed point )7= ~ = h = K r whose domain 
of attraction is the entire R 3. We may therefore take So so large that the 
points (Kf, ~(s), "h(s)) for s ~> So lie near the fixed point (KI, Kf, Kf). Also, 
we may take y so small that the points (f(y, s), g(7, s), h(~, s)) for s ~< So lie 
near to (Ks, g(s),h(s)). In particular, when t =  T--yso, the solution 
(f(~,, t), g(y, t), h( 7, t)) to (3.6) is in a neighbourhood tube of the straight 
line (x, x, x) in E3. It can be shown that this actually holds for all 
t~< T - 7 S o  (see e.g., Wasow (1965) Lemma 39.2). The rest is an easy argu- 
ment and can be found in the proof  of Theorem 39.1 of Wasow (1965). | 
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As pointed out in Wasow (1965), we have actually shown more: we 
have shown that convergence is not only uniform in the interval [0, T - f i ]  
(for fixed fi) but actually in the expanding interval [0, T - ? s 0 ]  as y---, 0. 
Also, the trajectory to (3.6) tends uniformly to a curve in ~3 consisting of 
two contiguous pieces: one is described parametrically by the solution 
( f ( s ) ,  ~(s), h(s)), 0 ~< s < oo to (3.10) and the other is described parametri- 
cally by the solution (fo(t), g0(t), ho(t)), 0 <~ t <~ T '  to (3.7). 

Next, we develop series expansions in powers of ~ for the solution to 
(3.6). From the preceding analysis, it is clear that no single series can 
approximate the solution in the whole interval [0, T];  separate treatments 
are required in a neighbourhood of T- - the  "boundary layer," as it is com- 
monly known--and  away from T. 

3.3. Series Approximations to the Solution h Outside the 
Boundary Layer 

Consider the series 

f ( t )  = Fo(t) + Fl( t  ) ~ + F2(t) ~ 2 + .. .  

g(t)  = Go(t) + G, ( t )  ~ + G2(t) 72 + ... (3.12) 

h(t) = Ho(t)  + H, ( t )  ~ + H2(t)  72 + . . .  

From the proof  of Lemma 3.1, we must necessarily have F o = fo,  Go = go 
etc. where (f0, go, h0) satisfy (3.7), but (3.12) cannot hold for t close to T -  
in particular, we do not know at this stage what are the appropriate 
boundary conditions for F1, F2 ..... G1, G2 .... etc. at t =  T. The other coef- 
ficients Fk, Gk etc. can be found by substituting (3.12) into (3.6) and 
equating powers of ~. Thus 

/~l -- 2GoG1 = 0 

Go+F1 - G 1 -  GoH0 = 0 (3.13) 

/-it0 + 2G1 - 2H1 - H 2 = 0 

The main problem with (3.13) is to decide what are the appropriate bound- 
ary values at t--- T; once these are known, (3.13) is easy to solve. 

3.4. Series Approximations to the Solution Ih Inside the 
Boundary Layer 

The behaviour of (f,  g, h) inside the boundary layer can be analysed 
by means of the stretching transformation s = ( T - t ) / 7 ,  which transforms 
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(3.6) into (3.8), whose solution has convergent expansions in powers of 7 
of the form 

f ( t )  = F0(s) + Fl(S) 7 + Fz(s) 72 + ... 

g( t) = Go(s) + C,(s) 7 + G2(s) 72 + ... (3.14) 

h( t )  = Ho(s  ) + f i t ( s )  7 -[- H 2 ( s )  7 2 "~ " ' "  

because the right-hand side of (3.8) is analytic. Standard theory tells us that 
F 0 -  jr,, G 0 -  g etc. where (f, g, h) satisfy (3.10) and are given by (3.11 ), and 
that Pk(0)= C~(0)= B~(0)= 0 for k/> 1. The coefficients Fk, G~ etc., can 
then be found by substituting (3.14) into (3.8) and equating powers of 7 as 
before. Thus 

P , ( s )  = - 8 ,o (S)  2 + x2  

(~"I(S) = - -  G I ( S )  -'1-/t~l(S ) - -  ( ~ o ( S ) / ~ o ( S )  ( 3 . 1 5 )  

/~(s) = - 2/4,(s) + 2Gl(S) --/~0(s) 2 

P~(0)=G~(0) =/(rl(0)=0. Note that (3.15) is a system of linear non- 
homogeneous ODEs and is therefore easy to solve, although the solution 
is quite messy. 

3.5. Matching the Two Series Approximations 

The series (3.14) approximate the solution inside the boundary layer 
while (3.12) approximate the solution outside the boundary layer (once we 
know the values of FI(T), G1(T), etc.); we still need to match up these two 
different approximations. This can be done by a method due to Vasil'eva 
and is presented in Section 40 of Wasow (1965). The basic idea involves 
first formally expanding the coefficients Fk, G~, and Hk in (3.12) as 
(possibly divergent) Taylor series of the form 

Fkj(V--,tJ= F yTJ 
j = o  j = o  

j = o  / = o  

j = o  j = 0  

(3.16) 
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and then substituting these formal Taylor series into (3.12) and rearranging 
the powers of y, giving series of the form 

f ( t )  = Po(S) ~- /~I (S)  y + P2(s) ~2 + ... 

g(t) = ~o(S) + (~,(s) ~ + ~2(s) y2 + .. .  (3.17) 

h(t) =/~o(S) +/-]rt(s) 7 +/]r2(s) 7 2 + "'" 

where 

k k k 

l~k(s) = Y', Fk j,j s j, Ok(s) = ~, Gk- j , j  s j, I2Ik(s) = 2 Hk- j ,J  sj 
j = 0  j = 0  j = 0  

By construction, it is reasonable to expect the series (3.17) to be close 
to (3.12) for small values of s, i.e., for values of t close to T--inside the 
boundary layer, where the series (3.12) do not approximate the solution t o  
(3.6). On the other hand, the series (3.17) and (3.14) are both solutions (at 
least formally) to the "stretched" ODEs (3.8), the main difference being 
that the coefficients in (3.17) have different initial values: for k i> 1 

~k(O) =Fk(T)  =Fko, ~k(0)= Gk(T)=  Gko, 12Ik(O) = H k ( T ) = H k o  (3.18) 

For k = 0 ,  the corresponding initial values are given by (3.7b, c) and by 
definition 

Fo = ~o - 1~1o - Ks  (3.19) 

Once again, the coefficients in (3.17) are found by substitution into (3.8). 
Thus 

P ' , ( s )  = + 4 2 

0'1(s) = - all(S) + Fl(S) - K} (3.20) 

/~(s)  = - 2/~l(S) + 2all(s) - K} 

(These are, of course, the same equations as (3.15) but taking into account 
the new definitions (3.18) and (3.19).) It is clear from (3.15) that the coef- 
ficients in (3.14) are in general very different from those in (3.17), which are 
polynomials in s. It turns out that for special choices of initial values for 
(3.20), the difference between these coefficients (i.e., between the functions 
with tildes appearing (3.14) and the corresponding ones with hats appear- 
ing in (3.17)) can be made exponentially small for large s (i.e., outside the 
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boundary layer), and it is these which are the appropriate initial values for 
(3.20), and hence the appropriate final values at t = T for (3.13). The choice 
of these initial values is described in Section 40 of Wasow (1965); we shall 
not go into the details here. (When specialized to our example, the choice 
of initial values described in Wasow (1965) is given by (3.23) below.) 

3.6. A Uniform Approximation to the Solution 

The three power series described in Sections 3.3-3.5 can now be com- 
bined to produce a series which approximates the solution (f, g, h) to (3.6) 
uniformly in the whole interval [ 0, T]. The next result is essentially the 
same as Theorem40.1 of Wasow (1965): Wasow only deals with the case 
of equations in R 2, but the analysis is virtually identical in ~n. 

T h e o r e m  3.2. Fix T, y > 0 and let s = (T--t)/y.  Consider the sums 

Then, as N-+ oe, 

N 

fN(t) = ~ (Fj(t) + ['j(s)-- ~.(s)) yJ (3.21a) 
j - O  

N 

gN(t) = ~ (Gj(t) + Cj(S) -- ~j(s)) yJ (3.21b) 
j = 0 

N 

hu(t) = • (Hi(t) +/~j(s) --/~j(s)) yJ (3.21c) 
j=O 

fN(t)--+f(t), gN( t )~g( t ) ,  hN( t )~h( t )  

uniformly in t ~ [0, T]. 
The intuitive explanation for Theorem 3.2 should by now be clear: by 

construction, we expect these to be close to Z~=oPj(s)yJ etc., for small 
values of s (inside the boundary layer) and by choosing the initial values 
for (3.20) carefully, they can be made to be close to Zf~=o Fj(t) yJ etc., for 
large values of s (outside the boundary layer). 

3.7. Explicit Computation of the Leading Terms 

We shall compute the terms in the series (3.21) up to the first order. 
For the approximation inside the boundary layer, the 0-order coefficients 
are already given by (3.11). The solution to (3.15) is 
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~,i(s) = 22s_ { ! K g -  K f )2 (1 -e -2" )  + 2Kf(Kg - Kf)(1 -- e s) + K } s }  

(3.22a) 

G ,( s ) - ( K I -  2Kg + Kh)( Kg - K/ ) e--3s 
2 

5K~ - 10KsKg + 3K~ + 2KsK h e-2" + 
2 

+ Ks(K s - Kg) se ~ - 7K~ - 9KsKg + KsKh + KgKh - 222 e -  , 
2 

+ 3 K f - 2 K f K g  - 2 K ~ -  222-2Kf~s+222s 
2 (3.22b) 

/~I(S) = 3 (Kf  -- 2Kg + Kh)(Kg - Kf) e -3. 

12Kr - 26K s Kg -+- 9 2 2 2 K ~ + 6 K I K h - K h  - 2  e_is + 
2 

- (5K~ - 7Ks/~ ~ + / ~ j K h  + / G K h  - 242 - 2 / Q s  + 2 K f / G , )  e-S 

3 K } -  2 ~ , . / ~ , - / ~  - 3x ~ - 2 / # ,  + 2~2s 
+ . (3.22c) 

2 

Consider  next the solution to (3.20). In  our  part icular  example, the 
appropr ia te  initial values are 

2 
/~ l (0 )=f0  ( ~ r ~  (3.23a) 

d l ( 0  ) = /~1(0)  --/~2 (3.23b) 

322 
/~rl ( 0 )= /~1  (0) 2 (3.23C) 

This gives the solution to (3.20) as 

3K~ - 2Kf Kg - K 2 
*0~(s) = (22 -- K~) s + ' 2 ~ (3.24a) 

2 2 2 dl(s) = 3K~ -- 2Kf K g "  Kg -- 22 -- 2Kj s + 222s 

2 

^ 3K~--2KzK~--K2--3)~2--2K~s+2,~2s 
HI(S ) = . g . 

2 

(3.24b) 

(3.24c) 
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(The 0-order coefficients are given by (3.19).) Observe that the differences 
Fo(s ) -  Fo(s), F l ( s ) - P l ( s )  etc., are indeed exponentially small for large s, 
as asserted earlier. 

Finally, for the solution outside the boundary layer, we already know 
that F0 = Go = H0 satisfy (3.7), the solution to which is 

F o ( t ) = G o ( t l = H o ( t l = 2 [ 2 + K f _ ( 2 _ K f l e - ( V  t)] (3.25) 
2 + K f + ( 2 - - K f )  e (~ ') 

(When Kj. = 0, we leave the reader to check the special case of the formula 
(3.3), that 

1 x 2 - c (O)}   Eexp{- - ro Bs 
where c( t) = 2 1 IT Ho(u ) du, indeed agrees with the well-known expression 

T 2 for the Laplace transform of ~o Bs ds, which can be found in Chan et al. 
(1994) or Yor (1992).) The solution to (3.13) with boundary values 
Ft(T) = P~(0), G~(T)= ~,(0)  and H , ( T ) =  ~rl(0 ) as given by (3.23) is 

422(F1(T) -- 22) 22 (3.26a) 
F,(t) - { (2 + KI.) e ~(r- t) + (2 -- KI) e - a T  ,)] 2 + 

G~(t) = r l ( t  ) - 22 = 422(F~(T) -- 22) 
[ (2+Kf )  e a T _ t ) + ( 2 _ K r ) e _ ~ r _ , ) ] 2  (3.26b) 

322 422(F~(T) :-- 22) 
H,(t) = F~(t) (3.26c) 

2 2 

2 [ ( 2 + K j . ) e a r - ' ) + ( 2 - K y . ) e - ~ ( T - ' ) ]  2 2 

(The expressions (3.22), (3.24), and (3.26), while rather messy, are readily 
obtained with the aid of a suitable computer package such as Mathematica.) 

We can now put all this together to find the first two terms in the series 
(3.21) and we shall see this in action in the examples in the next section. 

4. E X A M P L E S  

4.1. S ingle-Chain  Polymer: Un i fo rm Resistance Measure  

We consider first the simplest case, namely that of a single-chain 
polymer modelled by the process X in (1.2). We shall present an asymptotic 
expression for the partition function Z as in (1.0), up to leading order in 
7 = 1/a. The treatment of this simplest case presented below contains most 
of the essential ideas which will be adapted to more complicated situations. 
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We take r(ds) to be Lebesgue measure, in which case (1.0) may be 
rewritten as 

22 :~ 1 r   OEex { ,41  
(The superscript 0 on IF above indicates we are taking expectation with 
respect to the law of X with X 0 = 0. There is no loss of generality in this 
as (4.1) is translation-invariant.) 

Our first task is to express Z in terms of the solution to (3.6), f ,  g, etc. 
We can then make use of the asymptotic expansions developed in Section 3 
for these functions. 

P r o p o s i t i o n  4.1. Suppose that U 0 = 0  for the OU process (1.2b). 
Then the partition function Z given by (4.1) can be expressed in terms of 
the solution to (3.6) as follows: 

Z = 2 ~ e -c(~ 
f x / - ~  (4.2) 

Proof. Using the trick of "uncompleting the square" and mixing over 
an independent standard Gaussian random variable G that was introduced 
in Chan et al. (1994), we observe that 

Z = E ~ exp - -~ .~ ~ X,. ds (4.3) 

(The expectation in (4.3) is taken with respect to the joint (product) law 
of X and G.) Therefore, defining 

)]2 T T 

~ x / T  

we have Z = E[ 27(G)], where this last expectation is with respect to the law 
of G. But 

22 T (Xs..[_ I) 2 

=eV2/2~_v/(x ' /7)[exp{-~f:X:  

- X ~ S o X 0 - c ( 0 ) ~  (4.4) 
1 

= e v2/2 exp [ ~ _ ~ 
) 
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T according to (3.3). (Here, of course, X o = @/(2 v/-T), Uo).) If U o = 0, we 
have 

~ ' ( v ) = e x p { - - v 2 [ ' f ( O ) - - l )  \ 22T  (4.5) 

where c (0 )=2  - l  ~ h ( s ) d s  and f , g ,  h satisfy (3.4a)-(3.4c) and (3.5) with 
Kf = Kg = Kh = 0. Finally, using the well-known formula for the Laplace 
transform of a Z 2 random variable, we obtain 

,~, N/ /T e - c(O) 
Z =  n:[2(G) ] - 

~/f(O) 

Remark. Of course the same method will work for a general non- 
zero (and even random) Uo. Indeed, for our model, we should really take 
U0~N(0,(2a)  -1) otherwise the results (1.3)-(1.5) are no longer true. 
However, taking U0 = 0 will not change the large a asymptotic of the 
model, only the small ~ asymptotics. We take U0 = 0  for the sake of 
simplicity, to avoid messy algebra. 

Proposition4.1 now allows us to use the asymptotic expansions 
obtained in the preceding section to study the asymptotic behaviour of Z. 
The analysis in Section 3.7 for the special case Kf = Kg = K h = 0 gives the 
following asymptotic expansions as 7 = 1/0c --* 0: 

f ( t )  = 2 tanh[ 2( T -  t) ] + 722( 1 - sech2[ 2( T-- t) ] ) + 0(7) 

g(t) = 2 tanh[ 2( T-- t)] -- 722(sech2[ 2( T-- t)] -- e (~ ')/y + 0(7) 

722 (1 +2sechZ[A(T - t)] - 4 e  -(T o/y h(t) = 2 tanh[,~(T-- t)] - ~ -  

+ e --2(T-- t)/7) _~ 0(7) 

(4.6) 

These asymptotic expansions hold uniformly for t~ [0, T], so integrating 
the expansion for h term by term gives 

f o  logcosh(2T) 72( tanh(2T) -2T)  
c(O) = 2 ' h(s) ds - 2 + 4 + 0(7) (4.7) 

Substituting (4.6) and (4.7) into (4.2) and using the binomial theorem gives 

\ s inh(2T) /  - ~ -  ~ (3 tanh(2T)--2T) + 0(7) (4.8) 
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in which we recognize the 0-order term as that for the Brownian case 
(corresponding to a completely flexible single chain) which was obtained in 
C h a n e t  al. (1994), and the first-order correction in the case of small stiff- 
ness parameter can also be easily read-off. 

4.2. S ingle-Chain Polymer: Un i form Resistance Measure  
w i th  A toms 

The method of Lemma 3.1 can also deal with the case where the 
resistance measure has atoms. This situation arises when particles are 
attached to the ends of polymer strands. As a simple example, consider a 
single polymer chain with a particle attached at each end. The resistance 
measure would then take the form r(ds)=ds+ao6o(ds)+a~6T(ds ) for 
some ao, aT>0 .  The partition function Z can still be calculated by 
"uncompleting the square"? Z = E[2(G)  ] where 

~(v) = E ~ exp -- -~ X~r(ds) 

22 T (Xs 
= eV2/2 F~ [ exp { -  -~- i0 + 

= e ~:/2 ~:~/~ ~ [ exp 

= e~2/2 I~v/(~ ~ I exp 

/ v T  + ao + aT 

2 ~ / T + a o + a  r(ds) 

)~2 r 

22 r 22 
{ -  -f ~o X2 ds--2 (aTXZ +a~ 

1 X~SoX ~ _ c(O) t = e v2(l --ao/(T+a~ exp -- ~ ~ _ 

where, according to (3.1)-(3.3), S and c are the solutions to (3.2) with 
R = 0 and boundary conditions 

S t =  22at  (10 00) , c(T) = 0  

which simply translates to Kg = K h = 0 and Kf = 22a7- in the context of the 
asymptotic expansions developed earlier. 



168 Chan and Jansons 

4.3. Branching Polymers: Some Generalities 

We next turn our attention to the case of branching polymers, 
modelled as a (deterministic) branching version of the process X at (1.2a). 
This is done by using a tree ~- instead of an interval [0, T]  for the index 
set of the process X. (As a set, we regard ~- as consisting of the nodes and 
points along the branch segments.) We take the root  as the time origin, 
which will be denoted by 0. Let % be the natural partial ordering on #- 
and for s, t e J -  we denote by s/x t the most recent common ancestor of s 
and t. Thus {se~- :  s ~  t} is the unique path from 0 to t. By a process 
(X, U) indexed  by J- ,  we mean process which satisfies (1.2) along each 
branch segment and given ( X  A ~, Us A ,), (X~., Us.) and (Xt, 1.7,) are condi- 
tionally independent. 

We are interested in calculating the tree partition function 

z.= Eexp{- f. 
where X= p ~.~- X, dt and p ~ = ~.~- dr. Note that we are assuming here that 
the polymer branches are freely jointed at the nodes and the stiffness occurs 
only along the individual branches. As before, the same trick of mixing 
over an independent standard Gaussian random variable G shows that 

2 2 

(The superscript I :~ in (4.9) is a space variable: E x denotes expectation with 
respect to the law of X when Xo = x.) Define 

22 , X, ds}J 2.~-(v) :=~-~ { -  -~ f X~ ds-v~x/P fy 

,~ 2 U NI/~ 2 =evi/2[E~ {----~ !y (-'Ys+---~) ds}l 

= e~2/2 ~v'/P/; I exp {--  ~- i~  (4.10) 

We then have Z j  = E[2~-(G)].  Our aim therefore is to compute the func- 
tional 

which we do by means of the next result. 
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Proposition 4.2. Given a tree ~-- with an arbitary choice of root 0, 
let St and c(t)  satisfy the Riccati Eq. (3.2) with R = 0 on each branch of the 
tree, subject to the following (recursive) boundary condition at the nodes: 
for each node ti which is a free-end (and which is not the root), 
S(t i )  = c ( t i ) = 0 ;  for each internal node ni with k children (i.e., there are 
k + 1 branches leading from node ni), S ( n i )  = Sl (n i )  + S2(n~) + . . .  + Sk(ni)  
and c(ni) = cl(n~) + c2(n~) + . . .  + Ck(n~) where Si  and c~ are the solutions to 
(3.2) along each of the k descendent branches of node ni, subject to the 
same boundary condition as just described. Then 

~2 

where T _x; = (x0, u0). 

Proof .  Define the functional 

•2 2 ds} F~- :=exp { -  ~ !~_ X, 

If the root 0 has more than 1 descendent, then because of independence along 
each of the branches which descend from 0, we have F y  = F~-F~= ... F ~ ,  
where ~ denote the subtree consisting of 0 and the descendents 01" the it}~ 
child of 0. Therefore, we can assume without loss of generality that 0 has 
only one descendent, and the branch leading down from 0 to the first node 
n, will be denoted by (0, nl). Suppose that node n I has k descendents and 
let ~ now denote the subtree consisting of n l and the descendents of the 
ith child of nl. Then by the conditional independence structure on the tree 
and the Markov property 

~[F~-] = •[F(0, nl) F j ~ F ~ - 2 . . . F y  k] 

= [E{ ~-[ F(O, n l )  F <  F~2 . . . F#k ] ~ , ]  } 

=IZ{F(0, n,) rg[F~- I o~,] ~[F~-2 I o~ ,] ...tiC[F3- k ~ , 1 }  

= ~:{F(0, n,) E-x("0[r~-] . . .  I:-x~',)[Fyk] } 

By induction, it is therefore sufficient to prove the proposition for the 
simple star-shaped tree consisting of a central internal node n l and k + 1 
branches (0, nl), (nl, nl + t~), (nl, nl + t2) .... (n l ,  nl + tk), where the ti are 
free-ends. (Our notation is intended to suggest that the ith branch 
is of length t,.) Without loss of generality, we may take k = 2. From the 



170 Chan and Jansons 

one-dimensional case we treated earlier in Section 3, we know that 

~X (nl) S,(0) X(n,) - cl(0)} E x ~ , , ) [ F ~ t ] = e x p { _  1 r ~ 

~ ) ( ( h i )  82(0) _X(nl) C2(0)} []z#(n,)[F~-2] = e x p { - -  1 T - -  _ _  

where Si and ci are solutions to (3.2) with boundary conditions 
Si(ti) = ci(t~)=0. (Of course, here S;(0) and c~(0) denote the values at 
the node n~! Along the branch (0, nl), we solve (3.2) with the 
"branching" boundary condition S(nO=S~(O)+S2(O) and c(n~)= 
Cl(0) + c2(0). Therefore 

~:-x(~')[F~- ] E-x~')[F3-2] 

= exp{ - �89 + $2(0)] X(n,) -- [c ,(0)  + c2(0)] } 

= exp{ - ~ T ~X (n,) S(nl) X(n, ) -c (n , )}  

Hence 

IF{F(0, n,) ~--xr I:-X(n')[Fyk] } 

= ~:[M~] = M o = exp{ -- �89 X o - c(0)} 

where M t = e-V,, with V defined in (3.1), is a martingale along (0, n l). | 

Note. The process M constructed from S and c satisfying the 
"branching" boundary condition stated above is not quite a tree martingale 
on Y ,  in the obvious sense that E[M,I  ~ ] = M s A , ,  although it is a 
martingale along each individual branch segment of ~--. 

4.4. A 3 - B r a n c h e d  Star  Po lymer  

As an example of Proposition 4.2 in action, we consider the simplest 
tree, namely a star shape with 3 branches leading from a central node n 1 . 
We continue to take U0--0 for simplicity. 

Let one of the free ends be the root  0 and denote the other 2 free ends 
by t~ and t2 as before. Consider the asymptotic expansions obtained in the 
previous section for this case. Let f(1), g(1) etc., denote the solution to (3.6) 
along the branch (n~, n~ + t~) and similarly let f(2), g(2) etc., denote the 
solution along the branch (n~, n~ + t2). Along both of these branches, the 
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boundary conditions correspond to the case Ks.~ = K # ) =  Kh(,)= 0, so as 
before, we have 

f(i)(t) = 2 t a n h [ 2 ( t i -  t)] + 722(1 - sech2[2(t i -  t )])  + o(7) 

g(i)(t) = 2 tanh[ 2 ( te -  t)] - 722(sech2[ 2 ( t / -  t)] - e - ( ' -  ')/y + o(7 ) 

h(i)( t)=2tanh[2(ti- t)]  722(1 + 2 s e c h e [ 2 ( t ~ - t ) ]  (4.11) 
- 5 -  

- 4e-(" ') /y + e --2(If-- 1)/)') + 0() ]) 

f~, logcosh(2/i) ~2(tanh(2t~)-2t)  
c(S)(0) = 2 1 h(~)(s) & - 2 + 4 J- o(,/) 

Denote by f ,  g etc., the solution to (3.6) along the branch (0, nl). The 
corresponding boundary conditions are 

Kr = / ( ' ) ( 0  ) + f(2)(0) 

= 2 tanh(2tl) + 2 tanh(2t2) + ~22[tanhZ(2t0 + tanhZ(2ta)] + 0(7) 

Kg = g(')(0) + g(2)(0) 

= 2 tanh(2tl) + 2 tanh(2t2) 

__ ~ [ 2 [  sech2(2tl) + sech2(2t2) _ e-,,/y _ e-t2/y] + 0(7) (4.12) 

K h = h(l)(0) + h(2)(0) 

= 2 tanh(2t~) + 2 tanh(2t2) 722 --~-- [2 + 2 sech2(2t~) + 2 sechZ(2t2) 

- 4 e - t ' / ~  _ 4 e - ' 2 / Y  _ e 2 . / r  _ e - 2 , 2 / ~ ]  + o ( ? )  

The asymptotic expansions for f ,  g, h, and c are then given by the 
appropriate expressions in Section 3.7. As with the proof of Proposition 4.1 
for the single-chain polymer, we have 

2e-C(~ 
Zy=Y_[2~(G)] = (4.13) 

~pf(O) 

(Recall that we are taking Uo = 0.) Note that for our star polymer 

2c(O)= f~lh(u) du + f~' h(1)(u) du + fo'2h(2)(u) du (4.14) 

822/'88/1-2-13 
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Of course, the nodes in the branching polymers can always be replaced 
by particles that have polymer ends attached to them, just as in the 
example of 2 particles joined by a single polymer strand considered earlier. 
Also, we do not need to restrict ourselves to the case where all the branches 
have the same resistance measure. For  example, the same method can be 
easily adapted with only minor changes to deal with the case where the 
resistance measure along each branch (0, ti) is ri(dt)= r~ dt. 

4.5. Effect of Different Choices of Root 

For  the star polymer described above, instead of choosing 0 as the 
root of the tree, we could have chosen the internal node n~ as the root. In 
this case, the 3 branches are independent and the expressions (4.11) hold 
for i = 0 ,  1, 2. (Here, we have used the notation t o to denote the free end 
that was previously the root 0-- thus  to = n l . )  From the independence of 
the 3 branches we have 

2 
~X[F.~ -] = I~ nZX[F(o.,,)] 

i=0 

and so 

2.~-(v) = e v2/2 E~ ,/~/~ [ F j  ] 

= eV2/2 exp { _  v2P .k_ f(2)(0)) } ~ 5  (fro)(O) + f( ')(O) 

x exp{ -- cm)(O) - c(')(O) -- c(2)(0)} 

Hence 

Z~- = 2 exp{ - c<~ - c(1)(0) - c(2)(0)} (4.15) 

x/p(f(~ + f(')(O) + fr 

Of course, for this example, it is much easier to use (4.15) together with the 
one-dimensional asymptotic expansion (4.8) to obtain the asymptotic 
expansion for the tree. 

It is not at all obvious that the expressions (4.13) and (4.15) are identi- 
cal, which of course they should be. There does not seem to be a natural 
way--as  there is in Chan et al. (1994)-- to see that the expression for 
Z y  is independent of the choice of root in the case of a general tree; for 
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example, that (4.13) and (4.15) are identical does not seem to follow from 
any known properties of solutions to the Riccati equation. Here, we shall 
simply content ourselves with checking that at least the leading terms in 
the asymptotic expansions for (4.13) and (4.15) are the same. 

Observe from (4.12) that the leading terms of the constants Kj,  Kg, 
and Kh are identical, so from (3.19) and (3.11) we see that the leading 
terms in the differences F o ( s ) -  Fo(s), ~ o ( S ) -  ~o(s) etc., are identically 0. 
Therefore, the corresponding leading terms in (4.13) are given by 

2(A -- Be-2"% 
f ( 0 )  - 0 ( 7 )  = g ( 0 )  - 0 ( 7 )  = h ( 0 )  - 0 ( 7 )  - A + Be-2Xn' (4.16a) 

2c(0) - 0(7) = f~' h(u) - 0(7) du + 2c(~)(0) + 2c(2)(0) 

"~ 2(A - Be-24") du tt du + fo 
=f o  ~ +fo h(')(u) '2 h(2)(u) du (4.16b) 

where we have put  

A = 1 + tanh(2tt)  + tanh(2t2) 

B = 1 - tanh(2tl)  - tanh(2t2) 

The expression (44.16a) follows from (3.25) and (4.12). The functions h ") 
in the last two terms of (4.16b) are the same as those in (4.14). It therefore 
suffices to check that the leading term of 

e x p { - ~ h ( u )  du} 

f(O) 

is the same as the leading term of 

e --2c(~ 

f(o)(o ) q_f (1 ) (O)  q - f ( 2 ) ( O )  

To this end, observe that the right-hand side of (4.16a) can be written as 

A - Be --22nl 2(A -- B) 
A + Be --22rq - -  tanh(2to) + (Aea,o + Be-a'o )(e4,o + e-4'o) 
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Now 2 tanh(2to) is precisely the leading term of hm)(0) and fro)(0). Next, 
noting that A + B = 2, we have 

2(A - B )  log(A +Be 2a'o)--lof(1 +e -2;%) 
J0 ~ ( Ae ~" + B - - ~ ( - ~ "  + e-  ZU) du - 2 

Finally, 

1 + e 22t0 A + Be-22to 1 

A + Be 24'~ x 2(A -Be-24'o) = 2[tanh(2to) + tanh(2tl) + tanh(2t2)] 

as required. In a similar way, one can check that the fist-order terms in y 
in (4.13) and (4.15) also agree, but the calculations are much messier 
because of the nonlinearity in the constants K s, Kg, and Kh. 

4.6. General Star Polymers with Identical Branches 

In the case of a star polymer whose index set J -  consists of identical 
branches of the same length T and the resistance measure is the same along 
all the branches, there is yet another trick for factorizing the partition func- 
tion. This has already appeared in Dean and Jansons (1995); we shall 
briefly describe how it extends to semi-flexible polymers. 

Consider a star-shaped polymer with n identical branches of the form 
[0, T], taking Lebesgue measure on [0, T] as the resistance measure. We 
take as the root of J -  the central node, where all the branches are joined. 
The partition function then takes the form 

Z ~  = E ~ exp - ~- X~(s) d S - T n  X~(s) ds 
\ u i = 1  i = 1  

Denoting by X the process ( X l ,  X 2 ... . .  Xn) in R" and letting 

1 
r = 7  (1, 1,..., 1) 

the partition function may be rewritten as 

2 2 ( f  r 1 
Z ~ - = r g ~  ] X s l 2 d s - - ~ ( f o X , ' r d s ) 2 ) } l  
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By rotating the coordinate system in ~", taking r to be the first orthonor- 
mal basis vector (and continuing to using (X1, X2 ..... Am) to denote the 
components under the new coordinate system), we obtain 

2 2 1 

) 2  T 
= E~ [exp { -  ~ (fo X,(s)2ds-l(f:Xl(s)ds)2)}l 

x(E~ (4.17) 

where we have used the independence of the Xi. Everything in (4.17) is 
now in terms of "one-dimensional" quantities which we have already 
calculated earlier: from (4.8) we have the asymptotic expansion 

2 2 1 ~-~ 
\ s inh(2T) /  - ~- ~ (3 tanh(2T) - 2T) + o(),) 

and putting v = 0 in (4.4) and (4.5) we get 

,~2 T --1 
e - ( n -  1) c(0) 

where c(0) has the asymptotic expansion (4.7). We leave the reader to 
check that this indeed agrees with the special case of (4.15) with c~~ = 
c(1)(0) = c~2)(0) and f(~ =f(1)=f(2)(0) .  

5. Stochastic Area for Semiflexible Chains 

The treatment in Section 3 is sufficiently general to cover other quad- 
ratic frunctionals besides the positive ones which appear in the partition 
function. In particular, instead of taking R = 0 we can take Q = 0 and R a 
given anti-symmetric matrix in (3.1). This allows us to use the same 
method to find the law of the stochastic area associated with a linear 
stochastic process of the form (2.1). 

Suppose (X, U) and (Y, V) are two independent copies of the process 
described by (1.2) and we are interested in the stochastic area 
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~'o ( Y ,  d X , . - X s  d is ) .  To express  this in te rms o f  the genera l  s i tua t ion  of  
(2.1), pu t  X r =  (X, Y, U, V) and  let 

E =  0 - ~  0 ' c r=  (5.1) 

0 0 - e j  

The  the s tochas t ic  a rea  can  be wr i t ten  as I'o ( Y, d X s -  X ,  dye) = ~'o X r R  clX,. 
where  10 ) 

0 0 (5.2) 
R =  0 0 

0 0 

The  a rgumen t  (3.1)-(3.3)  can be  used exact ly  as before,  so solving the 
Riccat i  equa t ion  (3.2) wi th  Q = 0  and  b o u n d a r y  cond i t ions  S t = 0  and  
c r =  0 gives the law of  the s tochast ic  a rea  as 

~ - [ e x p { - O f : ( Y ~ . d X ~ - X ,  dy~) } l  = exp{ - � 8 9  Co (5.3) 

Thus  the p r o b l e m  of  de te rmin ing  the law of  the s tochas t ic  a rea  ts essen- 
t ia l ly the same as tha t  of  de te rmin ing  the pa r t i t i on  function.  
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